1. 成分検定(NPK、ミネラル、微量要素)

● 準備

1. 土の状態を確認する。(土の堅さなど)

2. 土をふるいにかける。

3. ろ過器を用意する。(抽出容器・ろ過器・ろ液受容器の3つ。抽出容器とろ液受容器は同じもの)

※抽出容器とろ液受容器には栓が入っていることを確認。

4. ろ紙は硬い面と柔らかい面があるので、注意する。手でさわると良くわかる。

5. ろ過器には、溝を切ってある面がある。

6. 硬い面をろ過器の溝の面に向けてセットする

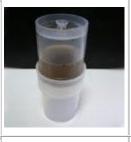
● 抽出液作り

1. 抽出容器に抽出試薬Bを上の目盛りまで20ml入れる。 ※冬季に抽出試薬Bが冷えているときは、25℃前後に暖めてから使用する。


2. 土壌マス2ccを使用して土壌を採取する。 ※粘土質の土はしっかり押さえて測る。柔らかい土は軽く押さえて測る。

3. 抽出容器に土を2cc入れる。

4. 抽出容器の上にろ過器、ろ液受容器の順番ではめ込む。 ※ろ過器はろ紙のつけた溝の切ってある面が下側にくるようにする。



5. 液が漏れないようにきちんとはめ込む。(きちんとはめ込まれないと液漏れの原因となり、抽出液の濃度が変わってしまう心配があります)

6. 濾過器を、円を描くように軽く3分間振る。 ※上下に激しく振るとろ紙を破損してしまいます。

> 【より多くの検体を精度よく分析するには 「*濾過器立を使用*」】

7. 3分経過したら上下を逆にして置く。

8. 上の栓を取ると、下のろ液受容器にろ過液が落ちる。

9. 目詰まりが多くろ液が落ちない場合は、震とう後直ぐに栓を抜かずに、 容器ごと斜めに静置し、しばらくしてから栓を抜く。 栓を抜いた後、角度を大きくしてろ過すると目詰まりしにくい。

10. 目詰まりした場合や時間がない場合は、付属の加圧スポイトで脱気孔から強制的に加圧してろ過する。(それでも落ちない場合は、ろ紙だけを新しく交換してみてください)

● 土壌検査

検定番号	1	2	3	4	5	6	7	8
検定成分	アンモニア態 窒素 (NH ₄ -N)	硝酸態 窒素 (NO ₃ -N)	可給態 リン酸 (P ₂ O ₅)	カリ (K₂O)	石灰 (CaO)	苦土 (MgO)	可給態鉄 (Fe)	交換性 マンガン (Mn)

1. 発色試験管を8本用意し、抽出ろ液の以下の量を各試験管にそれぞれ 入れる。

検定番号	1	2	3	4	5	6	7	8
単位:ml	0.5	1.0	1.5	2.0	0.5	0.5	2.0	2.0

【より多くの検体を精度よく分析するには 補助器具「可変式連続分注器O. 5ml)」】

【より多くの検体を精度よく分析するには 「試験管立 金属製50本立」】

2. 純水を各試験管の目盛3まで入れる。 ただし検定番号4、6、7、8には入れない。

検定番号	1	2	3	4	5	6	7	8
3ml まで	0	0	0	_	0	_	_	_

【より多くの検体を精度よく分析するには 「精製水の購入」】

3. 各検定試薬をそれぞれの試験管へ 0.5ml 入れる。液状の試薬は専用の スポイトで、粉状の試薬は試薬さじを使用する。

検定番号4は試薬8を入れた後、3分後に試薬9を入れる。 検定番号6の苦土試薬 A は1.5ml入れる。

試薬を入れるごとに試験管を振って、試薬と抽出液をよく混ぜる。

検定番号	1	2	3	4	5	6	7	8
試薬番号	2 & 3	4 & 5	6 & 7	8	10	A & B	12	13 & 14
3分以降	_	_	_	9	*	_	_	_

※ 検定番号5の試薬10は入れてすぐに混ぜる。

赤字は毒物、青字は劇物となります。取り扱いには十分ご注意ください。

【より多くの検体を精度よく分析するには 補助器具「ピペット(O. 5ml)」】

4. 各試験管を振って検定試薬と抽出ろ液をよく混ぜ、静置する。

検定番号	1	2	3	4	5	6	7	8
静置時間	10 分	10 分	5分	5分	5分	5分	10 分	5分

検定番号	1	2	3	4	5	6	7	8
色の安定性	1 時間 以内	安定	安定	不安定	不安定	安定	安定	安定

【より多くの検体を精度よく分析するには クッキングタイマーを使用」】

- 5. 比色・非濁表と比較して数値を読む。
- ※ 太陽光のもとで比色する。人工灯のもとでは誤差が生じやすい

【精度よく分析するには補助器具「*デジタル検定器*」】